P
(1]
o
I
)
=
o
o
>
O
o
<
1
oy}
o
Q
c
3

Cloud Native with
Serverless

Kevin Dubois
Sr Solution Architect

1] ¥ @kevindubois

O 00 O U B WIN =

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

package com.redhat.developer.demo;

v import javax.ws.rs.GET;
import javax.ws.rs.Path;

import io.vertx.core.logging.Logger;
import io.vertx.core.logging.LoggerFactory;

@Path("/businessvalue")
v public class BusinessValue {

private final String BUSINESS VALUE =
System.getenv().getOrDefault("BUSINESS VALUE", "Customer happiness");

private final Logger log = LoggerFactory.getLogger(BusinessValue.class);
@GET
@Path("/")
v public String generateValueToMyBusiness() {
log.info("Generating " + BUSINESS VALUE);

// do something that brings value to the business

return BUSINESS VALUE + " has been generated";

O 00 O U B WIN =

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

package com.redhat.developer.demo;

v import javax.ws.rs.GET;
import javax.ws.rs.Path;

import io.vertx.core.logging.Logger;
import io.vertx.core.logging.LoggerFactory;

@Path("/businessvalue")
v public cllass BusinessValue {

private finat Stiing BUSINESS VALUE =
System.getenv().getOrDefault("BUSINESS VALUE", "Customer happiness");

private final Logger log = LoggerFactory.getLogger(BusinessValue.class);
@GET
@Path("/")
v public String generateValueToMyBusiness() {
log.info("Generating " + BUSINESS VALUE);

// do something that brings value to the business

return BUSINESS VALUE + " has been generated";

W
\\

e

SERVERLESS

S I Defined
erverless Define @ﬁ»

“Serverless computing refers to the concept of
building and running applications that do not
require server management. |t describes a
deployment model where applications, bundled as
one or more functions, are uploaded to a platform
and executed, scaled and billed in response to

the exact demand at the moment’

CNCF Definition, https://www.cncf.io/blog/2018/02/14/cncf-takes-first-step-towards-serverless-computing/

https://www.cncf.io/blog/2018/02/14/cncf-takes-first-step-towards-serverless-computing/

Essentially, a service at rest

Application code / function

Deployed, to some infrastructure

That requires no resources until needed
Event driven

And will scale up and down based on actual
usage

And then return to a state of rest when idle

FaaS

Serverless

Storage

< > Messaging

Events

{API'}

S

S9IIAJID

User experience
Services
Debugging/IDE Integration
API Gateway Integration
Billing/Charging model

o Per function call

o Per execution time

o Resource consumption

Common use cases...

Processing web hooks

Scheduled tasks (a la cron)

Data transformation

Mobile image manipulation
(compression, conversion, and so on)
Voice packet to JSON transformation
(Alexa, Cortana, and so on)

Mobile video analysis (frame-grabbing)
PDF generation

Mobile/MBaas /single-page apps
Chat bots

Web
Mobile
loT

DevOps Automation

Focus on convenience and

business value, no distractions.

IJUDI].
EIEI].EI].].

].UUEI].

Q000

ooooooooooooooo

When not to use serverless A [

Real-time, ultra-low latency applications

Long running tasks that can't be split into steps

Advanced or complex observability and monitoring requirements
Memory or CPU requirements are very demanding and specific
Can't deal with cold-start...

L T L PR 2

Evolution of
Serverless

Red Hat

n

- volution of Serverless

1.0

AWS Lambda, Functions...

Serverless 1.0 was built around the FaaS
component and by other services such as
API Gateways. The genesis of the current is
general is available but far from ideal for
general computing, and with potential
candidates for improvements.

HTTP and other few Sources
Functions only

Limited execution time (5 min)
No orchestration
Limited local development experience

12

Serverless Pain Points

Portability
Control

Application performance

Risk reduction

Cost of labor

Speed of development

Flexibility of architecture

DevOps culture

Security (vulnerability mgnt & compliance)
Security (runtime)

Cost of resources

Flexibility of team responsibilities
Speed of deployment

Time to feature or lead time
Flexibility of scaling

Other

Source: The New Stack Guide to Serverless Tech

29%
27%

24%

7%
6%
4%

10%

% of Respondents Using Serverless Architecture

- volution of Serverless

1.0

AWS Lambda, Functions...

Serverless 1.0 was built around the FaaS
component and by other services such as
API Gateways. The genesis of the current is
general is available but far from ideal for
general computing, and with potential
candidates for improvements.

HTTP and other few Sources
Functions only

Limited execution time (5 min)
No orchestration
Limited local development experience

1.5

Serverless Containers

With the advent of Kubernetes, many
frameworks and solutions started to
auto-scale containers. Cloud providers
created offerings using managed services
completely abstracting Kubernetes APIs.

Red Hat joins Knative

Kubernetes based auto-scaling
Microservices and Functions
Easy to debug & test locally
Polyglot & Portable

14

SERVING

An event-driven model that
serves the container with your
application and can "scale to
zero".

EVENTING

Common infrastructure for
consuming and producing
events that will stimulate
applications.

;

https://unsplash.com/photos/qXakibuQiPU

@
A N~
N
“ '.
A N

AU 44

(Openshift) Pipelines Eventing

Provides Kubernetes native Common infrastructure for

modern resources for declaring consuming and producing events
Cl/CD pipelines. that will stimulate applications.

1.0

AWS Lambda, Functions...

Serverless 1.0 was built around the FaaS
component and by other services such as
API Gateways. The genesis of the current is
general is available but far from ideal for
general computing, and with potential
candidates for improvements.

HTTP and other few Sources
Functions only

Limited execution time (5 min)
No orchestration
Limited local development experience

- volution of Serverless

1.5

Serverless Containers

With the advent of Kubernetes, many
frameworks and solutions started to

auto-scale containers. Cloud providers
created offerings using managed services
completely abstracting Kubernetes APIs.

Red Hat joins Knative

Kubernetes based auto-scaling
Microservices and Functions
Easy to debug & test locally
Polyglot & Portable

2.0

Integration & State

The maturity and benefits of Serverless are
recognized industry wide and providers
start adding the missing parts to make
Serverless suitable for general purpose
workloads and used on the enterprise.

Basic state handling
Enterprise Integration Patterns

Advanced Messaging Capabilities
Blended with your PaaS
Enterprise-ready event sources

Red Hat

apiVersion: extensions/vibetal

Kubernetes

kind: HorizontalPodAutoscaler

metadata:
name: guestbook

apiVersion: apps/vi

namespace: default

kind: Deployment spec:
metadata: scaleRef:
name: frontend kind: ReplicationController
labels: name: guestbook
app: guestbook namespace: default
Spec: subresource: scale
selector: minReplicas: 1
matchlLabels:

app: guestbook
tier: frontend
replicas: 1

maxReplicas: 10
cpuUtilization:
targetPercentage: 50

template:
metadata:

labels:
app: guestbook
tier: frontend

spec:

containers:

- image: markusthoemmes/guestbo
name: guestbook
resources:

requests:
cpu: 160m
memory: 100M1
env :
- name: GET_HOSTS_FROM
value: dns
ports:
- containerPort: 80

~70 lines

apiVersion: VI
kind: Service
metadata:
name: frontend-service
labels:
app: guestbook
tier: frontend
spec:
ports:
- port: 80
selector:
app: guestbook
tier: frontend
apiVersion: route.openshift.io/vT
kind: Route

metadata:

name: frontend-route
spec:

to:

kind: Service

Knative

apiVersion: serving.knative.dev/vlalphal
kind: Service
metadata:
name: frontend
spec:
template:
metadata:
labels:
app: guestbook
tier: frontend

spec:
containers:
- image: markusthoemmes/guestbook
resources:
requests:
cpu: 1060m
memory: 100M1i
env:

- name: GET_HOSTS_FROM
value: dns

ports:

- containerPort: 80

22 lines

OPENSHIFT SERVERLESS

Microservices, Functions and Apps + Events = OpenShift Serverless

7D @ nede: @D
: Events Microservices ¢ :
; OPENSHIFT j S, =GO :

CLOUD FUNCTIONS

aws A 3 ;; Infrastructure

@ % Containers
0 G« :
) O A on
- ¥mongo P :

@ceph @ e
ro-
® coutme Infrastructure & Scheduling RED HAT
OPENSHIFT

=

PlanetScale * -
OperatorHub.io

‘ ‘ RedHat

- M MEMSQL

Optional section marker or title

DEMO

20

Red Hat

] QUARKUS

Supersonic Subatomic Java

A Kubernetes Native Java stack tailored for Open)DK HotSpot and GraalVM,
crafted from the best of breed Java libraries and standards.

mvn io.quarkus:quarkus-maven-plugin:1.0.0.CRl:create \
-DprojectGroupld=org.acme \
-DprojectArtifactId=getting-started \
-DclassName="org.acme.quickstart.GreetingResource" \
-Dpath="/hello"

cd getting-started

mvn package -Pnative -Dnative-image.docker-build=true

kn service create gettingstarted-quarkus --image=markito/getting-started:vl

APACHE CAMEL K

https://github.com/apache/camel-} *

[E) README.adoc Updated minikube doc

README.adoc Vs

Apache Camel K

jf’f

Apache Camel K (a.k.a. Kamel) is a lightweight integration framework built from Apache Camel that runs natively on

Kubernetes and is specifically designed for serverless and microservice architectures.
J a I I l ‘ Getting Started
st

Camel K allows to run integrations directly on a Kubernetes or OpenShift cluster. To use it, you need to be connected to a
cloud environment or to a local cluster created for development purposes.

If you need help on how to create a local development environment based on Minishift or Minikube, you can follow the local
cluster setup guide.

> A platform for directly running integrations on Openshift and Kubernetes
> Based on Operator SDK
» Apache-based, community-driven project

> Asubproject of Apache Camel started on August 31st, 2018
https://qgithub.com/apache/camel-k

https://github.com/apache/camel-k

. . Developer Preview
Functions as a Service

Azure Functions & KEDA

Key features

e FEnableFaaSin OpenSInift
Familiar d | ien ing VS Cod nd CLI
L amiliar aeveloper experience using ode and Azure
| ‘

e Polling based auto-scaling for Azure Queues, Kafka...

e Reuse Knative event sources, HTTP auto-scaling

e On premise or Any cloud. Microsoft

e Familiar to Kubernetes users. < >Azure
Learn more

e https://qithub.com/kedacore/keda

. In partnership with: ‘ RedHat | §" Microsoft Azure

https://github.com/kedacore/keda

A continuation of
Drools, jBPM and
Optaplanner but
completely
redesigned to be
cloud-native!

Next-gen Cloud-Native Business Automation

Cloud-Native Business Automation for building intelligent applications,
backed by battle-tested capabilities

£35 ®QuArkus &

kubernetes OPENSHIFT

INfiniscéon

o o APACHE
FRAMEWORK §8 katka.

Learn more

= el LI - OpenShift Serverless

- T . Build and deploy serverless applications using an
| | - event-driven infrastructure on Red Hat®
@pngpasmenapramanet == OpenShift®

Overview Resources

g) Tutorial

o -+ Get started with your serverless journey

:
- ! Knative Blog series

- Knative: Serving vour Serverless Services

Name Update Strategy
spring-petclinic-bchpw-deployment RollingUpdate

s .
Namespace Max Unavailable -
@ markito-rhte 25%of 10 pods 0 .
Labels Max Surge * .

app=spring-petclinic-bchpw 25% greater than 10 pods

© xiosk-encoder-y...
app.kubernetes.io/... =springBoo... -
appkubernetes.io/i... =spring-pe... Progress Deadline : i i
S B ST ™" - https://www.openshift.com/learn/topics/serverless
serving.knative.dev/configurati... =1 -
Min Ready Seconds -
Not Configured

serving.knat... »b8c3da91-ddcd-1...

& RedHat

https://www.openshift.com/learn/topics/serverless?hs_preview=UeLbdVVh-13292449875
https://www.openshift.com/learn/topics/serverless?hs_preview=UeLbdVVh-13292449875
https://www.openshift.com/learn/topics/serverless?hs_preview=UeLbdVVh-13292449875
https://redhat-developer-demos.github.io/knative-tutorial/knative-tutorial/0.7.x/index.html
https://blog.openshift.com/knative-serving-your-serverless-services/

(-
7]
>
=
]
=
<
N
o
N
o

P
(1]
o
I
)
=
o
o
>
O
o
<
1
oy}
o
Q
c
3

Thank you

o O

m linkedin.com/company/red-hat n facebook.com/redhatinc

E youtube.com/user/RedHatVideos u twitter.com/RedHat

‘ RedHat

