
Cloud Native with
Serverless

1

Red H
at Tech D

ay - B
elgium

January 20

20

Kevin Dubois
Sr Solution Architect

 @kevindubois

2

3

4

What is Serverless?

Serverless Defined

SERVERLESS

5

CNCF Definition, https://www.cncf.io/blog/2018/02/14/cncf-takes-first-step-towards-serverless-computing/

“Serverless computing refers to the concept of

building and running applications that do not

require server management. It describes a

deployment model where applications, bundled as

one or more functions, are uploaded to a platform

and executed, scaled and billed in response to

the exact demand at the moment"

event

action

result$

https://www.cncf.io/blog/2018/02/14/cncf-takes-first-step-towards-serverless-computing/

● Application code / function
● Deployed, to some infrastructure
● That requires no resources until needed
● Event driven
● And will scale up and down based on actual

usage
● And then return to a state of rest when idle

6

Essentially, a service at rest

FaaS

Serverless

Services

DB

Messaging

Events

{ API }

 f(x) {}

Storage

● User experience
● Services
● Debugging/IDE Integration
● API Gateway Integration
● Billing/Charging model

○ Per function call
○ Per execution time
○ Resource consumption

7

Common use cases…

▸ Processing web hooks
▸ Scheduled tasks (a la cron)
▸ Data transformation
▸ Mobile image manipulation

(compression, conversion, and so on)
▸ Voice packet to JSON transformation

(Alexa, Cortana, and so on)
▸ Mobile video analysis (frame-grabbing)
▸ PDF generation
▸ Mobile/MBaaS /single-page apps
▸ Chat bots

f()
Web

Mobile

IoT

DevOps Automation

Focus on convenience and
business value, no distractions.

8

When not to use serverless

➔ Real-time, ultra-low latency applications

➔ Long running tasks that can't be split into steps

➔ Advanced or complex observability and monitoring requirements

➔ Memory or CPU requirements are very demanding and specific

➔ Can't deal with cold-start...

9

10

O
ptional section m

arker or title

Evolution of
Serverless

11

AWS Lambda, Functions...

Serverless 1.0 was built around the FaaS
component and by other services such as
API Gateways. The genesis of the current is
general is available but far from ideal for
general computing, and with potential
candidates for improvements.

1.0

➔ HTTP and other few Sources
➔ Functions only
➔ Limited execution time (5 min)
➔ No orchestration
➔ Limited local development experience

Evolution of Serverless

Serverless Pain Points

12

Source: The New Stack Guide to Serverless Tech

13

AWS Lambda, Functions...

Serverless 1.0 was built around the FaaS
component and by other services such as
API Gateways. The genesis of the current is
general is available but far from ideal for
general computing, and with potential
candidates for improvements.

1.0

➔ HTTP and other few Sources
➔ Functions only
➔ Limited execution time (5 min)
➔ No orchestration
➔ Limited local development experience

Evolution of Serverless

Serverless Containers

With the advent of Kubernetes, many
frameworks and solutions started to
auto-scale containers. Cloud providers
created offerings using managed services
completely abstracting Kubernetes APIs.

1.5

➔ Red Hat joins Knative
➔ Kubernetes based auto-scaling
➔ Microservices and Functions
➔ Easy to debug & test locally
➔ Polyglot & Portable

14

15

SERVING

An event-driven model that
serves the container with your
application and can "scale to
zero".

Common infrastructure for
consuming and producing
events that will stimulate
applications.

EVENTING

Image https://unsplash.com/photos/qXakibuQiPU

https://unsplash.com/photos/qXakibuQiPU

16

Serving

An event-driven model that serves
the container with your

application and can "scale to
zero".

Eventing

Common infrastructure for
consuming and producing events
that will stimulate applications.

(Openshift) Pipelines

Provides Kubernetes native
modern resources for declaring

CI/CD pipelines.

17

AWS Lambda, Functions...

Serverless 1.0 was built around the FaaS
component and by other services such as
API Gateways. The genesis of the current is
general is available but far from ideal for
general computing, and with potential
candidates for improvements.

1.0

➔ HTTP and other few Sources
➔ Functions only
➔ Limited execution time (5 min)
➔ No orchestration
➔ Limited local development experience

Evolution of Serverless

Serverless Containers

With the advent of Kubernetes, many
frameworks and solutions started to
auto-scale containers. Cloud providers
created offerings using managed services
completely abstracting Kubernetes APIs.

1.5

➔ Red Hat joins Knative
➔ Kubernetes based auto-scaling
➔ Microservices and Functions
➔ Easy to debug & test locally
➔ Polyglot & Portable

Integration & State

The maturity and benefits of Serverless are
recognized industry wide and providers
start adding the missing parts to make
Serverless suitable for general purpose
workloads and used on the enterprise.

2.0

➔ Basic state handling
➔ Enterprise Integration Patterns
➔ Advanced Messaging Capabilities
➔ Blended with your PaaS
➔ Enterprise-ready event sources

apiVersion: apps/v1
kind: Deployment
metadata:
 name: frontend
 labels:
 app: guestbook
spec:
 selector:
 matchLabels:
 app: guestbook
 tier: frontend
 replicas: 1
 template:
 metadata:
 labels:
 app: guestbook
 tier: frontend
 spec:
 containers:
 - image: markusthoemmes/guestbook
 name: guestbook
 resources:
 requests:
 cpu: 100m
 memory: 100Mi
 env:
 - name: GET_HOSTS_FROM
 value: dns
 ports:
 - containerPort: 80

apiVersion: serving.knative.dev/v1alpha1
kind: Service
metadata:
 name: frontend
spec:
 template:
 metadata:
 labels:
 app: guestbook
 tier: frontend
 spec:
 containers:
 - image: markusthoemmes/guestbook
 resources:
 requests:
 cpu: 100m
 memory: 100Mi
 env:
 - name: GET_HOSTS_FROM
 value: dns
 ports:
 - containerPort: 80

apiVersion: v1
kind: Service
metadata:
 name: frontend-service
 labels:
 app: guestbook
 tier: frontend
spec:
 ports:
 - port: 80
 selector:
 app: guestbook
 tier: frontend

apiVersion: route.openshift.io/v1
kind: Route
metadata:
 name: frontend-route
spec:
 to:
 kind: Service
 name: frontend-service

Kubernetes

Knative

22 lines

~70 lines

apiVersion: extensions/v1beta1
kind: HorizontalPodAutoscaler
metadata:
 name: guestbook
 namespace: default
spec:
 scaleRef:
 kind: ReplicationController
 name: guestbook
 namespace: default
 subresource: scale
 minReplicas: 1
 maxReplicas: 10
 cpuUtilization:
 targetPercentage: 50

Microservices, Functions and Apps + Events = OpenShift Serverless

19

MicroservicesFunctions Apps

Containers

Infrastructure & Scheduling

Containers

Infrastructure & Scheduling

Events

Infrastructure

OPENSHIFT SERVERLESS

20

O
ptional section m

arker or title

DEMO

21

mvn io.quarkus:quarkus-maven-plugin:1.0.0.CR1:create \
 -DprojectGroupId=org.acme \
 -DprojectArtifactId=getting-started \
 -DclassName="org.acme.quickstart.GreetingResource" \
 -Dpath="/hello"
cd getting-started
mvn package -Pnative -Dnative-image.docker-build=true
kn service create gettingstarted-quarkus --image=markito/getting-started:v1

APACHE CAMEL K

▸ A platform for directly running integrations on Openshift and Kubernetes

▸ Based on Operator SDK

▸ Apache-based, community-driven project

▸ A subproject of Apache Camel started on August 31st, 2018

https://github.com/apache/camel-k

https://github.com/apache/camel-k

Sep 2019, Milano

Key features
● Enable FaaS in OpenShift
● Familiar developer experience using VS Code and Azure CLI
● Polling based auto-scaling for Azure Queues, Kafka...
● Reuse Knative event sources, HTTP auto-scaling
● On premise or Any cloud.
● Familiar to Kubernetes users.

Learn more
● https://github.com/kedacore/keda

In partnership with:

Azure Functions & KEDA

Functions as a Service

23

Developer Preview

https://github.com/kedacore/keda

Next-gen Cloud-Native Business Automation

Cloud-Native Business Automation for building intelligent applications,
 backed by battle-tested capabilities

Kogito

A continuation of
Drools, jBPM and
Optaplanner but

completely
redesigned to be

cloud-native!
COMMUNITY

ONLY !

Learn more

25

OpenShift Serverless
Build and deploy serverless applications using an
event-driven infrastructure on Red Hat®
OpenShift®

Tutorial
Get started with your serverless journey

Knative Blog series
Knative: Serving your Serverless Services

https://www.openshift.com/learn/topics/serverless

https://www.openshift.com/learn/topics/serverless?hs_preview=UeLbdVVh-13292449875
https://www.openshift.com/learn/topics/serverless?hs_preview=UeLbdVVh-13292449875
https://www.openshift.com/learn/topics/serverless?hs_preview=UeLbdVVh-13292449875
https://redhat-developer-demos.github.io/knative-tutorial/knative-tutorial/0.7.x/index.html
https://blog.openshift.com/knative-serving-your-serverless-services/

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

26

Thank you

Red H
at Tech D

ay - B
elgium

January 20

20

